
9 Complex Numbers

In mathematics, the complex numbers are an extension of the real numbers obtained by adjoining an imaginary
unit, denoted i, which satisfies

i2 = −1.

Complex numbers were first conceived and defined by the Italian mathematician Gerolamo Cardano, who called them
“fictitious”, during his attempts to find solutions to cubic equations. The solution of a general cubic equation may
require intermediate calculations containing the square roots of negative numbers, even when the final solutions are
real numbers, a situation known as casus irreducibilis. This ultimately led to the fundamental theorem of algebra,
which shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher.

9.1 Definitions and operations

Let us first review our history of learning mathematics. The first set of numbers that we learned was the set of
positive integers Z+, associated with which addition “+” and subtraction “−” were the earliest operations. At
that time, we could not carry out a − b if a < b. In other words, the set of positive integers is not closed under
subtraction. This was a serious drawback for mathematics, so a larger set of numbers, namely negative numbers, was
introduced. After supplementing positive integers with negative ones, the whole set of integers Z is then closed under
both addition and subtraction. This supplementation was the first important extension of the number system.

Following addition and subtraction, we learned multiplication “×” and division “÷”, still with the set of integers.

In countless situations, when we divided an integer a by another integer b, the quotient
a

b
was no longer an integer.

This new drawback resulted in the introduction of an even larger set of numbers — rational numbers Q. This was
the second important extension of the number system.

The next extension occurred with the introduction of the n-th power “�n” and the n-th root “ n
√
�” of a rational

number. An example of this could be that a number x was needed to satisfy x2 = 2, thus
√

2 was introduced.
These numbers are not rational, thus are called irrational numbers. Up till now, all numbers that we have been
dealing with are called real numbers R. However, the set of real numbers is still not closed under root extraction,
for example, there exist no square roots of −1 in R. For this purpose, we once again extend the number system by
introducing the notion of complex numbers C. A number x which satisfies the equation x2+1 = 0 is then denoted i.

Complex numbers are written in the form
z = a+ bi,

where a and b are real numbers, called the real part and the imaginary part of z, respectively, written as Re z = a
and Im z = b. The number i is the imaginary unit satisfying i2 = −1.

When b = 0, z = a is a real number; when a = 0 and b 6= 0, z = bi is called a (pure) imaginary number.

The set R is an ordered set: for any arbitrary real numbers x and y, exactly one of the following three relations holds:
x < y; x = y; or x > y. However the set C is not ordered; for example, one cannot compare 2− i with 1 + 3i.

Two complex numbers are said to be equal if and only if both their real parts and imaginary parts are equal:

a1 + b1i = a2 + b2i ⇐⇒

{
a1 = a2

b1 = b2



The set of complex numbers is closed under addition, subtraction, multiplication, division, power and root extraction.
Associative, commutative and distributive laws of algebra for real numbers also work for complex numbers. With
these laws, and the equation i2 = −1, we may carry out algebraic operations of complex numbers as follows:

� Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

� Subtraction: (a+ bi)− (c+ di) = (a− c) + (b− d)i.

� Multiplication: (a+ bi)× (c+ di) = ac+ adi + bci + bdi2 = (ac− bd) + (ad+ bc)i.

� Division:
a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=

(
ac+ bd

c2 + d2

)
+

(
bc− ad
c2 + d2

)
i, where c+ di 6= 0.

Exercise 60.

1. Given z = 3 + i and w = 1− 2i, express the following in the form of a+ bi, where a and b are real numbers.

z + wi,
z

w
,

1− i

w
,

zw

z + w

2. Evaluate the following expressions.

Re (2 + i)2, Im
1

2i
, (1 +

√
2i)3,

(
1 + i√

2

)4

,

(
1−
√

3i

2

)6

3. Given two complex numbers z and w, which of the followings are always true?

(a) Re (zi) = Im z

(b) Im (wi) = Rew

(c) Re (z − 3w) = Re z − 3Rew

(d) Im (2z + w) = 2Im z + Imw

(e) (Re z)× (Rew) = Re (zw)

(f)
Im z

Imw
= Im

( z
w

)
(g) [(Re z)2 + (Im z)2]× [(Rew)2 + (Imw)2] = [Re (zw)]2 + [Im (zw)]2

4. Given (2 + i)(x + yi) = 1 + 3i, where x and y are real, expand the multiplication then solve for x and y; then

compare your answer with
1 + 3i

2 + i
using the above division formula.

5. Let a, b and c be real numbers. Find a condition of the form Aa+Bb+Cc = 0, where A, B and C are integers,

which ensures that
a

1 + i
+

b

1 + 2i
+

c

1 + 3i
is real.

6. Find two complex values of z such that z2 = i.

7. Find the square roots of the following numbers:

(a) −3 + 4i

(b) 5 + 12i

8. Find four complex values of z such that z4 = −7 + 24i.



9.2 Modulus and conjugation

Since a complex number z = x + yi is uniquely specified by the ordered pair (x, y), the set of complex numbers is in
one-to-one correspondence with points on a two-dimensional Cartesian plane, called the complex plane or Argand
diagram, named after Jean-Robert Argand. In an Argand diagram, the axes are often referred to as the real axis
and the imaginary axis. The representation of z = x + yi is called Cartesian form (or rectangular form, or
algebraic form) of the complex number.

The modulus or absolute value of a complex number z = x+ yi is defined as

|z| =
√
x2 + y2.

The modulus of complex numbers has the following properties (exactly the same as the absolute value of real numbers):

� Non-negativity: ∀ z ∈ C, |z| ≥ 0.

� Positive-definiteness: ∀ z ∈ C, |z| = 0 ⇐⇒ z = 0.

� Multiplicativeness: ∀ z, w ∈ C, |zw| = |z| · |w|.

� Subadditivity: ∀ z, w ∈ C, |z + w| ≤ |z|+ |w|.

However, unlike real numbers, |z| does not necessarily equal
√
z2 if z is complex; the latter is even not well defined.

Rather we have, if z = a+ bi ∈ C,
|z|2 = a2 + b2 = (a+ bi)(a− bi).

The above equation suggests the importance of the number a − bi. Indeed, it is called the (complex) conjugate
of the complex number z = a + bi, written as z or z∗. z∗ is the “reflection” of z in the real axis. Some identities
concerning complex numbers and their conjugates are: ∀z, w ∈ C,

� (z ± w)∗ = z∗ ± w∗;

� (z · w)∗ = z∗ · w∗;

�

(
z
w

)∗
= z∗

w∗ ;

� (z∗)∗ = z;

� z∗ = z if and only if z is real;

� z∗ = −z if and only if z is either purely imaginary or zero;

� Re z = 1
2 (z + z∗);

� Im z = 1
2i (z − z

∗);

� |z| = |z∗|;

� |z|2 = z · z∗.

Exercise 61.

1. Prove the above properties of modulus and conjugation, and draw diagrams wherever appropriate.

2. Assume z = 2− i and w = 4 + 5i, label the following points in an Argand diagram.

4z − (2− i)w, z∗ + w∗,
z∗ + 2

w∗ + i
, (z + w)∗,

(
z + 2

w − i

)∗
3. Assume z = 2 + 3i and w = 4− i, evaluate the following.

|z + w|
|z|+ |w|

, (z − w)∗,
∣∣z6w−4∣∣ , zw∗ + z∗w,

(
z2 +

17

w2

)∗



In the geometrical point of view, the modulus of a complex number, |z|, denotes the distance between the point
representing the number z and the origin in the Argand diagram. In general, the distance between two points Z and
W in the Argand diagram is given by ZW = |z − w|, where the complex numbers z and w correspond to the points
respectively.

Worked examples:

1. In the complex plane, points A and B represent 2 + i and −4− i respectively, identify the set of points Z such
that AZ = BZ.

Solution. Let Z represent z = x+yi. The distances AZ and BZ are given by AZ = z−2− i and BZ = z+4+i.
Thus the equation AZ = BZ reads

|z − 2− i| = |z + 4 + i|
|z − 2− i|2 = |z + 4 + i|2

(z − 2− i)(z − 2− i)∗ = (z + 4 + i)(z + 4 + i)∗

(z − 2− i)(z∗ − 2 + i) = (z + 4 + i)(z∗ + 4− i)

zz∗ + (−2 + i)z + (−2− i)z∗ + 5 = zz∗ + (4− i)z + (4 + i)z∗ + 17.

Hence

(6− 2i)z + (6 + 2i)z∗ + 12 = 0

6(z + z∗)− 2i(z − z∗) + 12 = 0

6(2x)− 2i(2yi) + 12 = 0

3x+ y + 3 = 0

The line 3x + y + 3 = 0 is the perpendicular bisector of AB. You can check that any point on this line is
equidistant form the points A and B.

2. In the complex plane, points A and B represent 3 and 4i respectively, identify the set of points Z such that
3AZ = 2BZ.

Solution. Let Z represent z = x+ yi. The distances AZ and BZ are given by AZ = |z − 3| and BZ = |z − 4i|.
Thus the equation 3AZ = 2BZ reads

3|z − 3| = 2|z − 4i|
(3|z − 3|)2 = (2|z − 4i|)2

9(z − 3)(z − 3)∗ = 4(z − 4i)(z − 4i)∗

9(z − 3)(z∗ − 3) = 4(z − 4i)(z∗ + 4i)

9(zz∗ − 3z − 3z∗ + 9) = 4(zz∗ + 4iz − 4iz∗ + 16).

Hence

5zz∗ − 27(z + z∗)− 16i(z − z∗) + 17 = 0

5(x2 + y2)− 54x+ 32y + 17 = 0(
x− 27

5

)2

+

(
y +

16

5

)2

= 36∣∣∣∣z − (27

5
− 16i

5

)∣∣∣∣ = 6

This suggests that the locus of the point Z is a circle with center
(
27
5 −

16
5 i
)

and radius 6.



Exercise 62.

1. Represent each of the following equations or inequalities in an Argand diagram.

|z − 3| = 2, |z − 3i| = |z + 2|, |z + 2− i| < 2, |2z + i| ≥ |2z − 3|

Re z + Im z = 2, Re z =
√

3 Im z, zz∗ = 5, z − z∗ = 4i

(�) |3z| < |z + 4|, Im z + 2 ≤ |z|, |z − i|+ |z + i| > 4, |z − 2| − |z + 2| = 3

2. Given that |z − 4i| = 3, find the greatest value of |z + 5|.

3. Given that |z − 4| = |z + 2i|, find the least value of |z − i|.

4. Given that |z − 5| = 1, and |w + 1− i| = |w + 3 + i|, find the least value of |z − w|.

5. If z and w are complex numbers, prove that |z + w|2 + |z − w|2 = 2(|z|2 + |w|2), and interpret this equation
geometrically.

6. If z and w are complex numbers, prove that zw∗ + z∗w is a real number.

7. Two complex numbers, z and w, satisfying the inequalities |z − 3− 2i| ≤ 2 and |w− 7− 5i| ≤ 1. By drawing an
Argand diagram, find the least possible value and the greatest possible value of |z − w|.

8. In the complex plane, points A, B and C represent the complex numbers i, 2− i and 3 + 5i respectively. Point
D is equidistant to all these three points. Find the complex number that D represents.

9. In the complex plane, point Z represents the complex number z, identify the set of points Z such that |z−2+i| =
Re z, describing the locus of Z geometrically.

10. (�) P is a point in an Argand diagram corresponding to a complex number z, and |z + i| + |z − i| = 4.
Without much calculation, prove

√
3 ≤ |z| ≤ 2, and describe the locus of P geometrically.



9.3 The polar form

In addition to the Cartesian representation z = x+ yi, a complex number z can also be specified by the polar form.
For a complex number z, its polar coordinates are the parameters r and ϕ, where r = |z| ≥ 0 is its modulus (or
absolute value), and ϕ = arg z is called its argument. The argument is defined as the angle subtended between the
positive real axis and the line segment OZ in a counterclockwise direction in an Argand diagram, where Z is the point
representing the complex number z.

It can be seen that {
x = r cosϕ

y = r sinϕ
or z = r(cosϕ+ i sinϕ).

These equations hold for all kinds of angles of ϕ.

For z = 0, its argument may be any angle. One convention is to set arg 0 = 0, while another convention is to claim
that arg 0 is indeterminate.

For z 6= 0, the argument ϕ = arg z is unique modulo 2π, due to the periodicity of the sine and cosine functions.
To obtain a unique representation, a conventional choice is to limit ϕ within the interval (−π, π]. This value of ϕ is
sometimes called the principal value of arg z, written Arg z. (Throughout this course, the argument of a complex
number always refers to its principal value, unless otherwise stated.) Thus any non-zero complex number z can be
uniquely written in the polar form as z = r(cosϕ + i sinϕ), where r = |z| > 0 is its modulus and ϕ is the principal
argument of its argument.

Given a non-zero complex number z = x + yi and its corresponding point Z on an Argand diagram, its argument ϕ
can be determined as follows:

� If x > 0, Z lies in the right half plane, thus −π2 < ϕ < π
2 , which is exactly the range of inverse tangent function.

So in this case, we have
ϕ = tan−1 yx .

� If x = 0, z is a pure imaginary, and Z is on the imaginary axis. Therefore we have

ϕ =

{
π
2 if y > 0;

−π2 if y < 0.

� When x < 0, Z lies in the left half plane, thus ϕ is the range of (π2 , π] or (−π,−π2 ). Considering that tan−1 yx
would give an angle in the opposite direction of OZ, we have

ϕ =

{
tan−1 yx + π if y ≥ 0;

tan−1 yx − π if y < 0.

In the polar form, a complex number z and its complex conjugate z∗ have the same modulus, but opposite arguments:

[r(cos θ + i sin θ)]∗ = r(cos θ − i sin θ) = r[cos(−θ) + i sin(−θ)].

Exercise 63.

1. Plot the following complex numbers on an Argand diagram. For each of the numbers, find its modulus and
argument.

2
(

cos
π

3
+ i sin

π

3

)
,

√
2−
√

2i, −1 +
√

3i,
√

2 + 1− i, (
√

2−
√

6 + 4i)∗

2. Find the argument of z = 1 + i. Calculate u = z4, v = z5, and w = z6, and find their arguments.
(�) Hence conjecture a relation between arg z and arg(zk) for any z ∈ C and k ∈ Z+.

3. (�) Use your above conjecture to find the argument of z = −(1 +
√

3i)5 and w =
4

(
√

3− i)7
.



Geometrically, arg(z −w) = ϕ means that the point Z lies on the half-line starting from the point W and making an
angle of ϕ with the positive real axis in the counterclockwise direction.

Worked examples:

1. If arg z = π
4 and arg(z − 3) = π

2 , find arg(z − 6i).

Solution. Let z = x+yi. Since arg z = π
4 , the point Z lies on the half-line y = x with x > 0. Since arg(z−3) = π

2 ,
the translation from 3 to Z makes an angle of π2 with the positive real axis, so the point Z lies on the half-line x = 3
with y > 0. These two half-lines meet at the point (3, 3), thus z = 3 + 3i. Hence arg(z− 6i) = arg(3− 3i) = −π4 .

2. Given that arg(z − i) = 3π
4 , and |w + 3| = 1, find least values of |z − w|.

Solution. Let z = x+ yi and w = u+ vi. Since arg(z− i) = 3π
4 , we know that Z lies on the half-line y = −x+ 1,

with x < 0. |w + 3| = 1 means that W lies on the circle with radius 1 and center −3. The distance from the
point −3 to this half-line is 2

√
2, thus the least values of |z − w| is 2

√
2− 1.

Draw two diagrams to illustrate the above equations.

Exercise 64.

1. Use an Argand diagram to find, in the form x + yi, the complex numbers which satisfy the following pairs of
equations.

(a) arg(z − i) = π
2 , and |z + 1| = 5

(b) arg(2z + 4i) = π, and arg(z − 2 + 3i) = 5π
6

(c) arg(z + 2 + i) = π
3 , and |z − 1− 2i| = 2

(d) arg(z − 3− i) = − 3π
4 , and arg(z + 2) = −π4

2. Draw an Argand diagram, showing the set of points satisfying each of the following conditions. Use a solid line
to show boundary points which are included, and a dotted line for boundary points which are not included.

arg z =
π

5
, arg(z + 1− i) = −2π

5
, 0 < arg z <

π

6
, −π

4
≤ arg(z + i) ≤ π

4

3. Draw an Argand diagram, and shade the region where both |z − 4i| ≤ 3 and 0 < arg(z + 3) ≤ π
4 are satisfied.

Within this region, find

(a) the least value of Re z,

(b) the least value of arg z,

(c) the value of arg where Im z is maximized.



By using trigonometric identities, it follows that the product of z = r(cosα+ i sinα) and w = s(cosβ+ i sinβ) and be
written as

zw = r(cosα+ i sinα) · s(cosβ + i sinβ)

= rs(cosα cosβ + i sinα cosβ + i cosα sinβ + i2 sinα sinβ)

= rs((cosα cosβ − sinα sinβ) + i(sinα cosβ + cosα sinβ))

= rs(cos(α+ β) + i sin(α+ β)).

Therefore, it can be seen that the modulus of the product equals the product of the moduli, and that the argument
of the product equals the sum of the arguments modulo 2π.

The rule of division can be obtained in a similar fashion for z = r(cosα+ i sinα) and w = s(cosβ + i sinβ):

z

w
=
r

s
(cos(α− β) + i sin(α− β)).

This is to say, the modulus of the quotient equals the quotient of the moduli, and the argument of the quotient equals
the difference of the arguments modulo 2π.

Exercise 65.

1. If z = −2− 2i and w =
√

3− i, write zw and
z∗

w
in the polar form.

2. Use division of complex numbers to find the angle AOB, where A and B represent the complex numbers a =
√

3+i
and b = 1− i on an Argand plane, respectively.

3. Given z = 2
(
cos π3 + i sin π

3

)
, w = cos π4 + i sin π

4 and q = 4
(
cos
(
− 5π

6

)
+ i sin

(
− 5π

6

))
, write the following in the

polar form.

(a) zw

(b)
q

w

(c) zw2q

(d) wz∗

(e)
4i

q∗

(f)
z∗q2

w3

4. (�) Identify the set of points on an Argand diagram for which arg

(
z − 3

z − 4i

)
=
π

2
.

Also find the locus of Z representing the complex number z which satisfies: arg

(
z − 3

z − 4i

)
= −π

2
.

5. Write 1 +
√

3i and 1− i in the polar form, and express
(1 +

√
3i)4

(1− i)6
in the Cartesian form.

6. Given two complex numbers p = 1 + 3i, q = 5− i, and their corresponding points P and Q on an Argand plane,
find two possible points R such that 4PQR is an equilateral triangle.

7. Given two complex numbers u = 2 + i, v = 4− i, and their corresponding points U and V on an Argand plane,
find all possible points W such that 4UVW is an isosceles right triangle.

8. In the Argand diagram, the points Q and A represent the complex numbers 4 + 6i and 10 + 2i. If A, B, C, D,
E, F are the vertices, taken in clockwise order, or a regular hexagon with center Q, find the complex numbers
which represents B, D and F .



9.4 Solving quadratic equations

Solving quadratic equations of complex coefficients follows the same methods as in the real case.

Exercise 66.

Solve the following equations:

1. z2 + 2z + 3 = 0

2. z2 + z + (1− i) = 0

3. (2− i)z2 + (3 + i)z − 5 = 0

4. z2 − 2iz − 1 = 5− 12i

5. (1− i)z2 + 2z + 4 = 0

6. (1 + 2i)z2 + (−1 + 3i)z − 5i = 0

7. (2− i)z2 + (4 + 3i)z + (−1 + 3i) = 0

8. z3 = 1

If p(z) is a polynomial with real coefficients and w is a non-real root of p, then w∗ is also a root.

Proof. Let p(z) be a polynomial of degree n:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

whose coefficients an, an−1, · · · , a1 and a0 are all real numbers and an 6= 0. Then,

(p(z))∗ = (anz
n + an−1z

n−1 + · · ·+ a1z + a0)∗

= (anz
n)∗ + (an−1z

n−1)∗ + · · ·+ (a1z)
∗ + a∗0

= a∗n(z∗)n + a∗n−1(z∗)n−1 + · · ·+ a∗1z
∗ + a∗0

= an(z∗)n + an−1(z∗)n−1 + · · ·+ a1z
∗ + a0 (since the coefficients ak are all real)

= p(z∗).

Therefore, if p(w) = 0, p(w∗) = (p(w))∗ = 0∗ = 0. Thus non-real roots of the equation p(z) = 0 occur as conjugate
pairs.

Exercise 67.

(�) Show that z − 1 + i is a factor of the polynomial p(z) = z4 − 3z3 − 2z2 + 10z − 12.
Hence find all four roots of the equation p(z) = 0.

9.5 (�) Fundamental theorem of algebra [ EXTRA ]

The fundamental theorem of algebra states that every non-constant polynomial with complex coefficients has at
least one complex root. Therefore, it can be implied that every non-zero polynomial, with complex coefficients, has
exactly as many complex roots as its degree, if each root is counted up to its multiplicity.

In spite of its name, there is no known purely algebraic proof of the theorem, and many mathematicians believe that
such a proof does not exist. Besides, it is not fundamental for modern algebra; its name was given at a time in which
algebra was basically about solving polynomial equations with real or complex coefficients.

Considering the readership of this course, almost all proofs of the theorem involve some analysis that is way too
advanced. Therefore no proof is provided here.



9.6 (�) Exponential form [ EXTRA ]

A complex number in the polar form, z = r(cosϕ+ i sinϕ), can also be written in the exponential form z = reiϕ.

Proof. Let f(ϕ) = cosϕ + i sinϕ and g(ϕ) = eiϕ be two complex-valued functions of a real variable. Assuming that
the rules of exponents with real numbers also apply in the complex case, we may take derivatives of both functions
with respect to ϕ:

f ′(ϕ) = − sinϕ+ i cosϕ = i(cosϕ+ i sinϕ) = if(ϕ);

g′(ϕ) = eiϕ · i = ig(ϕ).

Since f and g both satisfy the differential equation

dz

dϕ
= iz,

and f(0) = g(0) = 1, the two functions must be identical for all values of ϕ.

In the exponential form, multiplication and division of complex numbers can be neatly expressed as(
reiα

)
·
(
seiβ

)
= (rs)ei(α+β) and

reiα

seiβ
=
(
r
s

)
ei(α−β).

It can be observed that these are consistent with the case of real numbers.

An extremely special case is, in the exponential form, when ϕ = π, we have eπi = −1, or

eπi + 1 = 0,

a quite neat equation called Euler’s identity. This identity is considered by many to be remarkable for its mathematical
beauty.

We conclude this section, hence the whole notes, by an application of the exponential form of complex numbers. We
have seen, in an earlier topic, applying integration by parts twice to evaluate the following integrals:∫

eax sin(bx) dx and

∫
eax cos(bx) dx,

where a and b are real constants. Since eibx = cos(bx) + i sin(bx), we may substitute

cos(bx) = Re (eibx) and sin(bx) = Im (eibx).

Hence ∫
eax sin(bx) dx =

∫
eax · Im (eibx) dx

=

∫
Im
(
eax+ibx

)
dx

= Im

(∫
e(a+bi)x dx

)
= Im

(
e(a+bi)x

a+ bi

)
+ C

= Im

(
eax · cos(bx) + i sin(bx)

a+ bi

)
+ C

= Im

(
eax · [a cos(bx)− b sin(bx)] + i[a sin(bx) + b cos(bx)]

a2 + b2

)
+ C

=
eax

a2 + b2
[a sin(bx) + b cos(bx)] + C.

Exercise 68.

Work out a similar expression for the integral

∫
eax cos(bx) dx by using the exponential form of complex number.

[ End of the notes. Last updated on October 19, 2021. ]


